Maximum Order of Periodic Outer Automorphisms of a Free Group

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characterization of Periodic Automorphisms of a Free Group

Let 9 be an automorphism of finite order of a free group X. We characterise the action of 9 on X by showing that X has a free basis which is the disjoint union of finite subsets Sj, where if S,, ~ {uq, «,,..., uk) then u¡9 ~ ul+x (0 < 1 < k) and uk9 = AjUqBj for some A}, B¡ in X and e = ±1. As an application of this result, we obtain a list of the conjugacy classes of periodic automorphisms of ...

متن کامل

Outer automorphisms of free Burnside groups

In this paper, we study some properties of the outer automorphism group of free Burnside groups of large odd exponent. In particular, we prove that it contains free and free abelian subgroups.

متن کامل

Parageometric Outer Automorphisms of Free Groups

We study those fully irreducible outer automorphisms φ of a finite rank free group Fr which are parageometric, meaning that the attracting fixed point of φ in the boundary of outer space is a geometric R-tree with respect to the action of Fr, but φ itself is not a geometric outer automorphism in that it is not represented by a homeomorphism of a surface. Our main result shows that the expansion...

متن کامل

Dynamics of free group automorphisms

We present a coarse convexity result for the dynamics of free group automorphisms: Given an automorphism φ of a finitely generated free group F , we show that for all x ∈ F and 0 ≤ i ≤ N , the length of φ(x) is bounded above by a constant multiple of the sum of the lengths of x and φ (x), with the constant depending only on φ.

متن کامل

On Marginal Automorphisms of a Group Fixing the Certain Subgroup

Let W be a variety of groups defined by a set W of laws and G be a finite p-group in W. The automorphism α of a group G is said to bea marginal automorphism (with respect to W), if for all x ∈ G, x−1α(x) ∈ W∗(G), where W∗(G) is the marginal subgroup of G. Let M,N be two normalsubgroups of G. By AutM(G), we mean the subgroup of Aut(G) consistingof all automorphisms which centralize G/M. AutN(G) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2000

ISSN: 0021-8693

DOI: 10.1006/jabr.1999.8074